Self-Adaptation in Learning Classifier Systems

نویسندگان

  • Jacob Hurst
  • Larry Bull
چکیده

The use and potential benefits of self-adaptive mutation operators are well-known within evolutionary computing. In this paper we begin by examining the use of self-adaptive mutation in Learning Classifier Systems. We implement the operator in the simple ZCS classifier and examine its performance in two maze environments. It is shown that, although no significant increase in performance is seen over results presented in the literature using a fixed rate of mutation, the operator adapts to an appropriate rate regardless of the initial range. The same concept is then applied to the learning rate parameter, but results show that a modification must be made to produce stable/effective controllers. Results from a fully self-adaptive system are also presented, with marked benefits found in a non-stationary environment. We then apply self-adaptation to the more complex XCS classifier system with similar overall results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS

Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...

متن کامل

Parameter Adaptation within Co-adaptive Learning Classifier Systems

The authors propose a co-adaptive approach to controlling parameters for coevolution-based learning classifier systems. By taking advantage of the on-line incremental learning capability of such systems, solutions can be produced that completely cover a target problem. The system combines the advantages of both adaptive and self-adaptive parameter-control approaches. Using a coevolution model m...

متن کامل

Self-adaptation of parameters in a learning classifier system ensemble machine

Self-adaptation is a key feature of evolutionary algorithms (EAs). Although EAs have been used successfully to solve a wide variety of problems, the performance of this technique depends heavily on the selection of the EA parameters. Moreover, the process of setting such parameters is considered a time-consuming task. Several research works have tried to deal with this problem; however, the con...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000